
FileMap: Map-Reduce Program Execution
on Loosely-Coupled Distributed Systems

Michael E. Fisk
Los Alamos National Laboratory

mfisk@lanl.gov

Curtis L. Hash Jr.
Los Alamos National Laboratory

chash@lanl.gov

In this paper we present FileMap, an open-source,1 al-
ternative map-reduce-based computing system that we have
developed and utilized over the last 5 years. This system fea-
tures several significant design decisions and performance
aspects that are not found in prevalent map-reduce sys-
tems such as Hadoop [16]. The prevailing design goal is
to have a system for scheduling and orchestrating parallel
and distributed data processing, but that does not interpose
itself between data and the serial programs that process data.
FileMap manages the organization of input and output files
and the scheduling of program execution, but does not pro-
cess files itself and is agnostic to the format in which data is
stored and/or indexed. We layer on top of existing, ubiqui-
tous file systems, security models, and network access soft-
ware in order to minimize the complexity of FileMap and
maximize the ability of its users to benefit from specialized
compute platforms, file systems, and software.

We measure the performance of FileMap in several in-
stantiations including a heterogeneous “cloud” conglom-
eration of computers and storage distributed across multi-
ple owning organizations with no cross-organization trust
or synchronization. This “cloud” model intentionally sup-
ports distributed sensor systems in which nodes collect their
own data and participate in analysis of data by moving
map/reduce processing upstream to where the data is col-
lected.

Our on SMP systems, clusters built for Hadoop, and
this distributed cloud, show that FileMap outperforms more
prevalent computing systems and models by factors between
2x (compared to Hadoop) and 14x (cloud vs. centralized).

1
http://mfisk.github.io/filemap

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CloudDP ’14, April 13, 2014, Amsterdam, Netherlands.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2714-5/14/04. . . $15.00.
http://dx.doi.org/10.1145/592784.2592790

FileMap provides a single programming model that al-
lows processing to seamlessly scale from a single laptop to
data-intensive compute clusters to distributed sensing and
analysis clouds.

This paper introduces our fundamental design decisions
in Section 1 and specifics of the implementation in Section
2. Section 3 describes the use of embedded databases within
our system. Section 4 presents a performance benchmark
measured across a variety of computing environments.

1. Design Decisions and Related Work
While Google was first to popularize the distributed Map-
Reduce programming model [4], functional programming
with map and reduce functions dates back at least to the mid
1980’s [3]. Hadoop [16] is an open-source implementation
of distributed Map-Reduce and has become the canonical
implementation for many users. However, it has been shown
in our tests and in others that Hadoop can often yield perfor-
mance that falls well short of the optimum [11, 19].

There are other systems for file-based distributed com-
puting, but these previous systems, unlike FileMap, do not
manage distributed data placement or scheduling of execu-
tion in-situ where the files are stored. For example, Condor
[13] is a system for running non-interactive programs on
loosely-coupled collections of computers, but all file access
is remote through either a global filesystem or remote system
calls across the network. Makeflow [1] is a file-based data-
intensive computing workflow system which utilizes Con-
dor by explicitly copying input and output files across the
network or other systems like Hadoop that use a global file
system.

The remainder of this section enumerates several other
design choices and objectives.

Externalize data ingestion. In contrast to other systems,
we impose no overhead or process to ingest data into the
system. Data can be ingested through any mechanism that
results in it appearing in the file systems used by our sys-
tem. Sensors can acquire data and drop it directly into local
filesystems. Equally, cluster nodes can use parallel filesys-
tems, streaming systems, or offline media to acquire data.
The system does not require any notification that additional

http://mfisk.github.io/filemap

data has been added. Continuous or future jobs that apply
to the new data will automatically process it. Atomic file
modification (typically using a temporary file followed by
an atomic filesystem rename) is used to add or update data
in the system atomically.

Amortize costs over large chunks of data. Our system
does not operate at the level of individual tuples or relations.
Instead, we process large batches of data stored in files.
A file may contain a single, very complex object or, more
typically, millions of individual tuples or relations. We do
not optimize the system for small changes to these chunks of
data; any change to an input file will result in the complete
reprocessing of that file and any downstream processing.

Schedule disks first and then CPUs. In many data-
intensive workloads, I/O, rather than CPU, can be the more
severe bottleneck. Our scheduler manages both resources
but treats filesystems as the fundamental scheduling unit
rather than treating a computer or a core as a the fundamen-
tal unit2. The scheduler avoids expensive disk thrashing by
only scheduling more than one process per filesystem when
the process is CPU bound rather than I/O bound. If mul-
tiple users run FileMap concurrently, then each node will
be executing at least one process per user. Schedulers use a
feedback control mechanism to fairly compete for disk and
CPU resources with the objective of not overloading either
resource while continuing to make some progress for each
user concurrently. On clusters that are intended to give ex-
clusive resource access to one user at a time, we use the
SLURM resource manager and batch scheduling [18] .

Do not impose a programming language or data stor-
age format. We have designed our system so that it can be
used to apply arbitrary commands to arbitrary file types. Lin-
guistic processing can be run on text files. Image process-
ing can be run on images. Network packet processing can
be applied to libpcap files. In each case, existing, domain-
specific tools can be used. Embedded databases are used
when more traditional tuple-based storage and SQL queries
are desired. Files are processed by map and reduce pro-
grams rather than by functions as in systems like Hadoop.
Hadoop’s “Streaming” mode for piping data through pro-
grams is widely used but suffers additional performance
overhead since the Hadoop runtime interposes itself as a
parser and broker between data and the programs. In con-
trast, FileMap is a scheduling and orchestration system that
executes programs directly on stored data.

Zero installation. Computing users often do not have
privileged access on either high-performance computing
clusters or distributed environments across organizational
boundaries. FileMap requires no installation or privileges
and carries itself and its configuration to all nodes involved
in a computation.

2 A computer with multiple filesystems on separate disks (or on separate
RAID sets) is actually treated as multiple nodes in the current implementa-
tion

Loose coupling. FileMap supports loosely-coupled clus-
ters, distributed sensors, and networks of workstations. The
fundamental connectivity that is required between nodes
is remote command execution as provided by ssh, rsh, or
srun[18]. Synchronization of work across replicated data is
optional. There are no explicit head nodes or lock servers re-
quired. Job execution is launched from any system — one of
the cluster nodes, a front-end node, or a user workstation.

Do not impose a security model or attack surface and
allow existing system security models to be used. The
Unix-based computing world has a well-defined set of in-
terfaces, conventions, and functionality. We reuse as many
of these as possible in order to improve the flexibility of
our system. Specifically, our system can operate on any
filesystem implementation and uses Unix users for access
control. There are no privileged or supervisor processes
in our system. The system can be instantiated with unen-
crypted, host-based trust implementations like rsh and per-
missive file permissions, or with strongly authenticated and
encrypted remote command invocation, fine-grained filesys-
tem ACLs, mandatory access control separations, and strict
process accounting. Similarly, competitive scheduling and
resource management is also left to the underlying operating
system. Our system controls the level of demand placed on
the underlying system by an individual user, but relies on the
underlying system to schedule processes between competing
users.

Scale up and down. The system operates efficiently in
single-computer environments as well as larger clusters.
When running on a single computer, the system should im-
pose no substantial performance penalty compared to run-
ning as a traditional serial pipeline.

Provenance and caching. For scientific reproducibility
and to make use of automatic caching of partial results, the
system manages input and output locations in a way that
implicitly captures the precise derivation of data processing
pipelines. It is easy to trace back to the source of any data
processing output in the system.

1.1 Inspiration and Related Work
Data-flow through files with automatic reprocessing when
input files change timestamps is inspired by make [5]. Pro-
cessing a list of files provided on stdin is inspired by xargs.
The principle that everything can and should be done with
remote command execution is inspired by Plan 9 [10]. De-
composition of large data sets with map-shuffle-reduce pro-
gramming steps is inspired by Google [4]. In short, one
could describe our system as distributed parallel make with
map-reduce operations.

2. Implementation
Users typically submit map/reduce pipelines that specify
multiple commands. For example, consider the following

FileMap pipeline to compute word frequency across a text
corpus:

txt2words | sort | uniq -c | partition -f2 <>- total
where sort and uniq are standard Unix commands, txt2words
tokenizes an input text file to a newline-delimited sequence
of words, and partition -f2 takes an input file, hashes on the
second column (the individual word in this case) and creates
a number of output files containing partitions of the input
file, and total which takes count data as produced by uniq -c
and prints cumulative totals for each word.

The | operator has the same pipe semantics as in most
Unix shells. However, the <, >, and || operators have differ-
ent semantics and punctuate where a map/reduce pipeline is
divided into jobs. We define the semantics of those operators
here, followed by the details of how they are executed.

The parallel pipeline operator || is defined to have similar
semantics to a regular shell pipe, but with caching of the
intermediate data to files on disk (as described in more detail
in the following subsection).

The operator < is defined to mean that each output file
(including stdout, which is implicitly created) of the previ-
ous command will be distributed to some number of other
cluster nodes. The destination nodes are chosen by hashing
the basename3 of the output file. Thus, if this pipeline is ap-
plied to multiple input files that each create a set of output
partition files numbered 1–1000, each file named “1” will be
sent to the same set of nodes. Each file named “2” will be
sent to some other set of nodes, etc. Writing multiple files is
the way that commands enable parallel reduce operations to
occur. Traditional Unix programs that output a single text-
based output file can be partitioned using other utilities in-
cluding a FileMap command-line helper utility.

The operator > is a reduce operator and specifies that
the following command will take multiple input files. The -
modifier further states that the reduce command will take its
list of input files on stdin rather than the command line. This
is necessary to support very high-degree reduce operations
on traditional Unix systems which limit the number or size
of command-line arguments. In our example, one invocation
of total will be run all of the files named “1” on one of the
nodes that received all of those files during the < operation.
A separate invocation of total will process all of the files
named “2” and so on.

In our txt2words example, if there are 50 input files and
the partition command creates 100 partitions for each input
file, then the 5,000 resulting files are copied between nodes
in the cluster. For each partition, one node will receive the
50 inputs and run the total command to sum those inputs
and produce an output file. The result is 100 output files
distributed across the nodes in the cluster.

3 A unix basename is the final component in the /-delimited path

2.1 Job Execution
The cluster configuration is defined by a single text file. Ev-
ery user or map/reduce command can use a different cluster
configuration or a default configuration file on the system
will be used.

Job submission occurs via command line and results in
one or more jobfiles being placed on each node. Each ele-
ment of the submitted pipeline maps to a separate job file.4
Once those job files are in place, a per-user scheduler process
is invoked on each node. If an existing scheduler process is
already running for that user, that scheduler will automati-
cally discover the new jobs and begin execution. When there
is no more work to be done, the scheduler process exits.

Each jobfile defines a set of input files or file globs to
process and a single command (or a pipeline of single-| com-
mands) to apply each input. Derived data is stored in a direc-
tory tree associated with the input file. For example, if an in-
put file /epubs/alice.txt is an input to the above pipeline, then
a /epubs/alice.txt.d/txt2words directory will be created5 and
that will be the current directory when txt2words is run. The
stdout from the sort process will be stored in a file called std-
out and the stderr (if any) will be stored in a file called .stderr
(these files are removed upon completion if empty). Runtime
statistics including exit status and performance counters are
stored in a .status file created upon completion of the com-
mand. The input file is passed as a command-line argument
to the given job command (by default appended to the first
or only element of a command pipeline or alternatively sub-
stituted for any occurrence of the string %(input)). The com-
mand may create other files in that directory and, in fact,
should create multiple files when serving as a partition oper-
ator leading to a shuffle and reduce.

With the exception of reduce steps, the next job in a
pipeline is run separately on each output file (that does not
begin with a “.” character) of a previous stage. Often there is
only one output — the stdout file.

The scheduler is designed so that it can be uncleanly
killed and restarted at any time. When a job is run on an input
file, the output is stored in a temporary directory whose name
begins with a “.”. Only when that processing completes
is the “.” removed so that the results become available to
other jobs. If a job is rerun or the scheduler restarted these
temporary directories will be removed and that element of
processing restarted.

2.2 Data Transfer Between Nodes
Our system provides get and store commands to copy data
to or from the cluster and ls, mv, rm, and df commands to

4 Jobfiles are named with a hash of their contents so that duplicate submis-
sions or resubmissions do not create duplicate jobfiles.
5 Non-alphanumeric characters in the command specification are converted
to quoted-printable representation to avoid illegal and confusing characters
in the file system. Overly-log filenames are truncated and terminated with a
hash of the full command line.

examine the aggregate filesystem view comprised of all of
the participating nodes.

All file transport between nodes (for jobfiles, redistribute
operations, and explicit get, store, and replicate commands)
is performed with rsync [14] run via remote command exe-
cution. When upstream inputs change, downstream compu-
tations and redistributes are performed again as well. Use
of rsync allows us to avoid retransmitting data that has not
changed and to intelligently compress data that is not already
compressed.

2.3 Synchronization
Synchronization of work being performed across nodes is
optional and unnecessary when data is not replicated. How-
ever, in a contemporary-style map/reduce cluster where reli-
ability comes from cross-node replication rather than RAID
within nodes, there is no point in having redundant compu-
tation of the same downstream result. Thus, in this mode of
use, a Synchronizer is used to prevent a node from starting
an item of work that has already been processed by another
node (if that node is still marked as part of the computation
and active). Inputs are processed in random order (and repli-
cation typically results in no two nodes having the same set
of inputs anyway) to minimize the probability that two nodes
will even attempt to process the same file at the same time.

The current synchronizer implementation uses a common
network filesystem across nodes. Synchronization data is not
large, but can have a large number of small requests. The
throughput and capacity of this filesystem are not stressed,
but file server operations per second is the limiting factor.
This has not been a constraint to date but likely would
be in larger clusters. Alternate synchronizers could use a
web-services API or traditional transactional database for
synchronization.

Environments with high-reliability nodes or nodes that
collect their own data and do not (or cannot afford to) repli-
cate that data need no synchronization. A distributed sensor
environment, for example, would not require synchroniza-
tion across a wide-area network and would therefore not be
sensitive to the extra latency.

Synchronization can be specified per node so that a single
system with multiple scheduled filesystems could synchro-
nize with itself using just a local filesystem for synchroniza-
tion. A distributed cluster compromised of multiple nodes
per location with only local replication can be configured to
synchronize within a location, but not across locations.

2.4 Inactive Nodes
In large clusters, there will be some nodes down at any
time. Our cluster configurations allow nodes to be explicitly
declared inactive. When submitting a jobfile to nodes, any
non-responsive nodes are marked inactive for the remainder
of the job.

When picking nodes to transfer data to for redistribute
operations, inactive nodes are skipped and data is guaranteed
to be stored onto an active node.

The store operation assumes that inter-cluster bandwidth
is at least as great as the bandwidth from the storing machine
to the cluster, so a single copy of each file is stored into the
cluster and then data is replicated within the cluster. It is pre-
sumed that important data will be re-replicated periodically
so that nodes that have (re-)joined the cluster will receive
their share of the data.

2.5 Error Handling
In a research or ad-hoc query environment, it is not uncom-
mon for a user to submit a workload that includes a job
which will always fail. For example, the job may be a script
or command that is being developed and has a fatal bug. The
user may have passed it an illegal set of arguments that result
in error. We have learned from experience that computing
100,000 errors before alerting the user is wasteful of both
compute and user time. We therefore default to submitting
jobs that check the exit status of each process. If any pro-
cess returns non-zero, that job is terminated on that node.
This will usually result in the entire workload terminating as
soon as it has no other non-error work to perform. The user is
notified as soon as one of the nodes terminates its workload.
Exit status is also checked when starting a workload and any
cached input that had an error is removed and re-attempted.

Exit status can be optionally ignored when it is permis-
sible for some commands to return an error, but this is not
recommended.

2.6 Replication
We use a consistent hashing algorithm [12] to pick the nodes
that should contain replicas of data or process specific parti-
tions of data. Consistent hashing provides a statistically even
distribution of data while minimizing the amount of data that
needs to be relocated when a node is added or removed. The
fraction of data that is assigned to a node can be scaled man-
ually to deal with nodes that have disproportionately small
or large amounts of storage.

3. Query Functionality
We have designed our system so that it can be used to
apply arbitrary commands to arbitrary file types. Linguistic
processing can be run on text files. Image processing can be
run on images. Network packet processing can be applied
to libpcap files. In each case, existing, domain-specific tools
can be used.

However, it is also common to process tabular data and to
want to perform map operations that are standard selection,
projection, and/or aggregation operations on that data. Re-
duce operations include the bag-union and relational queries.
Thus, without limiting our system to a particular database
implementation, we do seek to provide a stylized, but famil-
iar query environment to users. Automatic query planning of

a complex query as a map/reduce pipeline has been done by
others in [2, 8] and would be advantageous as well. Our pre-
vious work on the System for Modular Analysis and Contin-
uous Queries [6, 7] performs algebraic rewriting of multiple
concurrent stream queries.

We have therefore implemented a db command that uses
embedded database libraries to manage local storage and
query of tabular data. By using filesystem-based embedded
databases, we can use our system’s models for replication,
communication, and scheduling while inheriting the index
and/or query functionality of the embedded database. Our
implementation currently supports sqlite3 [9], HDF, Fast-
bit [17], CSV, and column-oriented text databases. Each of
these embedded databases uses local files for storage rather
than relying on a network service to serialize access, as
is the case for MySQL, Oracle, DB and other multi-user
databases. Wherever possible we explicitly disable transac-
tions and journaling to improve performance since the basic
job scheduling mechanisms of our system already prevent
readers from accessing a database that is still being gener-
ated.

Our db command allows our previous map/reduce work-
load to be rewritten with the following database commands
rather than requiring that partition and total text processing
tools be created:

txt2words
| db –import word:text
|| db -q “count(*), word” -k word -n 256
<>- db -q “sum(count), word”

The db command always creates a new output database
from one or more input databases. The import option cre-
ates a new table from tabular text input. When a -q option is
given, the specified query is applied to the input(s). When the
-k options is given, the specified field(s) are used to partition
the input across -n output databases. Note that these com-
mands assume a 1-1 relationship between databases and ta-
bles so that table names are unnecessary. We use the implicit-
groupby shorthand where invoking an aggregate function
like sum() implicitly causes a group by operation on all non-
aggregate fields.

Our db command uses a library for processing tabular
data with SQL queries. Queries are parsed into three ele-
ments: read columns, select (filter), and project (including
aggregates). Data providers can implement simple read, read
with select, or full SQL (read with select and project). The
library provides default in-memory implementations of the
select and project for data sources that do not provide them.

4. Performance
In this section we quantitatively show that FileMap allows
for a single programming model to be automatically scaled
on different platforms: a laptop, SMP, cluster, and a geo-
graphically distributed, heterogeneous cloud.

Platform Baseline Time FileMap
(secs) Time Speedup

Laptop Serial 315.7 410.6 0.8x
Laptop (gzip) Serial 227.4 378.5 0.6x
SMP Serial 246.3 236.4 1x
SMP (gzip) Serial 236.4 24.3 10x
Cluster Hadoop 104.0 52.5 2x
Cloud Get + SMP 403.2 29.3 14x
Cloud (gzip) Get + SMP 348.9 35.4 10x

Table 1. Performance comparison on multiple platforms

We conducted benchmarks with a public dataset for re-
producibility. Specifically, we used the Daily Global His-
torical Climatology Network dataset [15] which consists of
86,670,524 records and is 22GB in uncompressed form. For
our tests, we split the dataset into 100 evenly-sized files.

The analysis performed was a histogram of weather sta-
tion observations (histograms are a common, simple bench-
mark for map-reduce systems). All processing was done
with the cut and awk commands and zcat was used in the
cases where data was compressed.

We conducted tests on 4 platforms: a laptop, a 48-way
SMP, a cluster built for Hadoop, and a geographically dis-
tributed heterogeneous cloud. We measured baseline serial
performance on the laptop and SMP. We measured FileMap
performance on all platforms. Hadoop performance was
measured on the Hadoop cluster.

4.1 Cloud Configuration
The cloud used in this paper consisted of 63 computers in
5 different U.S. cities including 3 separate small clusters, 2
virtual machines at a commercial cloud hosting service, and
a network of workstations in a computer lab. While storage
space is not the focus of this paper, the cluster totals 216 TB
of capacity.

No software was installed on any of these systems for
these tests and no privileged-user intervention or configu-
ration was required other than creating an account for the
author (with the obvious exception that Hadoop was pre-
installed on the Hadoop cluster). The systems are adminis-
tered by 6 different owning organizations. There are no net-
work filesystems that are cross-mounted between owning or-
ganizations and the organizations were unaware of the other
organizations involved.

This cloud configuration consists only of Linux comput-
ers, but is otherwise relatively heterogeneous. It runs 12 dif-
ferent Linux kernels and 9 different versions of 4 Linux dis-
tributions. Hardware consists of 184 hardware threads of 14
different CPU types including Intel Xeon, AMD, and Intel
Core i5. Three different filesystem types are used. FileMap
is written in Python and the cloud has 5 different versions of
Python.

The baseline test on our distributed cloud computation,
which was designed to mimic a distributed sensor system,

was to copy all data from the distributed sensors to the SMP
and then analyze the data there. This copy was done with
parallel rsyncs from the SMP to each of the other computers.
The load average during this copy peaked at 3.5 and the
average network utilization was less than 150 Mb/s although
with compression the effective transfer rate of uncompressed
data was 1.2 Gb/s.

4.2 Results
Table 1 summarizes the results. FileMap outperforms the al-
ternative on all multi-node tests including a 2x improvement
over Hadoop and 10-14x improvements in the cloud test.

On the SMP, FileMap did not exceed serial performance
with uncompressed data since disk I/O was the bottleneck
even in the serial case. However, when the data is com-
pressed, FileMap parallelization on the SMP results in a 10x
speed improvement.

In the laptop case, there is an overall loss in performance
as a result of a single serial program nearly completely con-
suming the laptop’s resources; since the first program is not
quite utilizing the machine, FileMap starts a second concur-
rent process which happens to result in thrashing behavior.
Future scheduler improvements could resolve this perfor-
mance issue in environments where parallelism is not de-
sirable.

5. Conclusion
We presented a novel approach to map-reduce system de-
sign and implementation and demonstrated the effective-
ness of this approach with benchmarks on a spectrum of
platforms. The use of geographically distributed cloud of
loosely-couple machines is particularly and uniquely strong
for FileMap compared to other systems that assume that
computations are performed within a single administrative
domain.

We have described both a specific system instantiation
and its performance, but also the design decisions that drove
system development which may inform other system de-
signs.

References
[1] M. Albrecht, P. Donnelly, P. Bui, and D. Thain. Makeflow: a

portable abstraction for data intensive computing on clusters,
clouds, and grids. In Proceedings of the 1st ACM SIGMOD
Workshop on Scalable Workflow Execution Engines and Tech-
nologies, page 1. ACM, 2012.

[2] S. Babu. Towards automatic optimization of mapreduce pro-
grams. In Proceedings of the 1st ACM symposium on Cloud
computing, pages 137–142. ACM, 2010.

[3] R. Bird. Lectures on constructive functional programming.
Constructive Methods in Computer Science. Springer-Verlag.
Also available as Technical Monograph PRG-69, from the
Programming Research Group, Oxford University, 1988.

[4] J. Dean and S. Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51
(1):107–113, 2008.

[5] S. I. Feldman. Makea program for maintaining computer
programs. Software: Practice and experience, 9(4):255–265,
1979.

[6] M. Fisk. System for modular analysis and continuous queries,
2003. URL http://smacq.sf.net.

[7] M. Fisk and G. Varghese. Agile and scalable analysis of
network events. In Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment, pages 285–290. ACM,
2002.

[8] C. Olston, B. Reed, A. Silberstein, and U. Srivastava. Auto-
matic optimization of parallel dataflow programs. In USENIX
Annual Technical Conference, pages 267–273, 2008.

[9] M. Owens. The definitive guide to SQLite. Apress, 2006.
[10] R. Pike, D. Presotto, K. Thompson, H. Trickey, et al. Plan 9

from bell labs. In Proceedings of the summer 1990 UKUUG
Conference, pages 1–9, 1990.

[11] J. Shafer, S. Rixner, and A. L. Cox. The hadoop distributed
filesystem: Balancing portability and performance. In Perfor-
mance Analysis of Systems & Software (ISPASS), 2010 IEEE
International Symposium on, pages 122–133. IEEE, 2010.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In ACM SIGCOMM Computer Commu-
nication Review, volume 31, pages 149–160. ACM, 2001.

[13] D. Thain, T. Tannenbaum, and M. Livny. Distributed comput-
ing in practice: the condor experience. Concurrency - Practice
and Experience, 17(2-4):323–356, 2005.

[14] A. Tridgell. Efficient algorithms for sorting and synchroniza-
tion. Australian National University Canberra, 1999.

[15] U.S. National Oceanic and Atmospheric Administration.
Daily global historical climatology network-daily (version
3.11), Sept. 2013. URL ftp://ftp.ncdc.noaa.gov/pub/

data/ghcn/daily/.
[16] T. White. Hadoop: the definitive guide. O’Reilly, 2012.
[17] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs,

E. Cormier-Michel, C. Geddes, J. Gu, H. Hagen, B. Hamann,
et al. Fastbit: interactively searching massive data. In Journal
of Physics: Conference Series, volume 180, page 012053. IOP
Publishing, 2009.

[18] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm: Simple linux
utility for resource management. In Job Scheduling Strategies
for Parallel Processing, pages 44–60. Springer, 2003.

[19] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica. Improving mapreduce performance in heteroge-
neous environments. In OSDI, volume 8, page 7, 2008.

http://smacq.sf.net
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/

	Design Decisions and Related Work
	Inspiration and Related Work

	Implementation
	Job Execution
	Data Transfer Between Nodes
	Synchronization
	Inactive Nodes
	Error Handling
	Replication

	Query Functionality
	Performance
	Cloud Configuration
	Results

	Conclusion

